二十三、还行-《校草制霸录》
第(2/3)页
幸好上课铃及时响起。
《复变函数》课老师是个五十多岁的小老头,上午拜码头的时候见过,如果江水源没有记错的话,他应该姓凌,具体叫什么当时倒没介绍,只知道他好像得过全省的什么奖。他进来之后,似乎也发现了江水源,不过没有声张,打开ppt慢悠悠地说道:“这节课,我们来学《辐角原理与rouche定理》……”
他说话带着浓重的扬州味儿,好在淮安、扬州都属于江淮方言片,江水源听起来不算困难。
辐角原理又称柯西辐角原理,是复变函数里的一个重要原理,此前在尼达姆的书里学过。江水源仔细听了大约二十分钟,不禁微微摇头:实在太啰嗦了,简直跟高中老师似的,把一个不算难的辐角原理颠来倒去说了十几分钟,关键还没说清楚。为什么就不能说得更条理清晰、更简洁明了一点呢?
虽然江水源没有看过凌老师用的是什么教材,但可以想见,绝对是每张纸上都密密麻麻挤满了枯燥的知识点和居高临下的“由此可得”“不难证明”。那些教材编写者仿佛认为纸张是世界上最可宝贵的东西,所以在他们的书里,决不允许出现半句废话或者任何简单的推理证明过程。于是,授课老师也就跟着变成饲养员,把教材里这些低剂量、高浓度的知识点反复咀嚼,反复填灌给一脸懵逼的学生。在此过程中,不仅老师自己讲得累,学生听得更累。
期间江水源感觉那个凌老师还看了自己好几次,好像在分辨自己能否听懂。
江水源不想再浪费时间,干脆掏出一篇《数学年鉴》论文看了起来。两节课间,凌老师特意走过来问道:“怎么样小江,听得懂吗?”
江水源站起身,礼貌地笑了笑:“还行。”
凌老师显然听说了江水源一进校门就要旁听大一大二课程的豪言壮语,所以上课时一直在留意他的表现,结果发现前半节课还算专心,后半节课似乎已经放弃治疗,一直低头在忙自己的东西,当下便语重心长地说道:“《复变函数》是数学系的专业基础,相对来说比较难,不必急于求成。在学习《复变函数》之前,最好先修《数学分析》或《高等数学》,否则听起来会比较吃力。欲速则不达的道理,你应该懂吧?”
江水源乖巧地点点头:“我懂的。好在之前我学过尼达姆的《复分析:可视化方法》,所以说,还行。”
尼达姆的《复分析:可视化方法》是复分析领域的名着,凌老师教了那么多年《复变函数》,自然知道这本书的鼎鼎大名,甚至他还抽空翻过一遍。话说那本书可比自己教的深奥多了!他眉头微皱:“那尼达姆的书,你看懂了么?”
“还行。”
又是“还行”!
凌老师有些不高兴,转身走上讲台,抄起一支粉笔就在黑板上刷刷写道:“设f在一个包含闭单位圆盘的开集上{除去单位圆周上一个极点z0}全纯,证明:若∑anz^n表示f在开单位圆盘的泰勒级数,那么lim.anan+1=z0。”写完拍拍手:“来,小江,看看这道题你会做么?”
第(2/3)页